2011

  1. [Aplin and Williams 2011]
    Meteorological phenomena in Western classical orchestral music
    Music

  2. [Bernal et al. 2011]
    A paleoclimate reconstruction for the Holocene based upon variations of 18O in aU-Th dated stalagmite from southwestern Mexico is presented. Our results indicate that the arrival of moisture to the area has been strongly linked to the input of glacial meltwaters into the North Atlantic throughout the Holocene. The record also suggests a complex interplay between Caribbean and Pacific moisture sources, modulated by the North Atlantic SST and the position of the ITCZ, where Pacific moisture becomes increasingly more influential through ENSO since 4.3 ka. The interruption of stalagmite growth during the largest climatic anomalies of the Holocene (10.3 and 8.2 ka) is evidenced by the presence of hiatuses, which suggest a severe disruption in the arrival of moisture to the area. The 18O record presented here has important implications for understanding the evolution of the North American Monsoon and climate in southwestern Mexico, as it represents one of the most detailed archives of climate variability for the area spanning most of the Holocene
    Drought, SW Mexico

  3. [van den Besselaar et al. 2011]
    In this study we introduce a daily high-resolution land-only observational gridded data set for sea level pressure covering the European region as a new addition to the EOBS gridded data sets of daily temperatures and precipitation amounts. This data set improves upon existing products in terms of spatial resolution and extent. The data set is delivered on the same four spatial resolutions as the other EOBS data sets: 0.25 by 0.25 and 0.5 by 0.5 on a regular latitude-longitude grid and 0.22 by 0.22 and 0.44 by 0.44 on a rotated pole grid. We show that there is a good agreement in the long-term mean and standard deviation with popular reanalysis grids. In areas with a relatively high number of stations, the gridded data is closer to the station data than the reanalysis products. There is also a very good agreement with daily weather charts for selected storm events.
    EOBS, SLP

  4. [Bird et al. 2011]
    Decadal and centennial mean state changes in South American summer monsoon (SASM) precipitation during the last 2,300 years are detailed using an annually resolved authigenic calcite record of precipitation δ18O from a varved lake in the Central Peruvian Andes. This unique sediment record shows that δ18O peaked during the Medieval Climate Anomaly (MCA) from A.D. 900 to 1100, providing evidence that the SASM weakened considerably during this period. Minimum δ18O values occurred during the Little Ice Age (LIA) between A.D. 1400 and 1820, reflecting a prolonged intensification of the SASM that was regionally synchronous. After the LIA, δ18O increased rapidly, particularly during the current warm period (CWP; A.D. 1900 to present), indicating a return to reduced SASM precipitation that was more abrupt and sustained than the onset of the MCA. Diminished SASM precipitation during the MCA and CWP tracks reconstructed Northern Hemisphere and North Atlantic warming and a northward displacement of the Intertropical Convergence Zone (ITCZ) over the Atlantic, and likely the Pacific. Intensified SASM precipitation during the LIA follows reconstructed Northern Hemisphere and North Atlantic cooling, El Niño-like warming in the Pacific, and a southward displacement of the ITCZ over both oceans. These results suggest that SASM mean state changes are sensitive to ITCZ variability as mediated by Western Hemisphere tropical sea surface temperatures, particularly in the Atlantic. Continued Northern Hemisphere and North Atlantic warming may therefore help perpetuate the recent reductions in SASM precipitation that characterize the last 100 years, which would negatively impact Andean water resources.
    itcz, LM

  5. [Briffa and Melvin 2011]
    Some background describing the rationale and early development of regional curve standardization (RCS) is provided. It is shown how, in the application of RCS, low-frequency variance is preserved in the mean values of individual series of tree indices, while medium-frequency variance is also preserved in the slopes. Various problems in the use of the RCS approach are highlighted. The first problem arises because RCS detrending removes the average slope (derived from the data for all trees) from each individual tree measurement series. This operation results in a pervasive trend-insignal  bias, which occurs when the underlying growth-forcing signal has variance on timescales that approach or exceed the length of the chronology. Even in a long chronology (i.e., including subfossil data), this effect will bias the start and end of the RCS chronology. Two particular problems associated with the use of RCS on contemporaneously growing trees, which might represent a typical (i.e., modern) sample, are also discussed. The first is the biasing of the RCS curve by the residual climate signal in age-aligned samples and the undesirable subsequent removal of this signal variance in RCS application. The second is the differing-contemporaneous-growth-rate  bias that effectively imparts a spurious trend over the span of a modern chronology. The first of these two can be mitigated by the application of signal-free  RCS. The second problem is more insidious and can only be overcome by the use of multiple sub-RCS curves, with a concomitant potential loss of some longer-timescale climate variance. Examples of potential biasing problems in the application of RCS are illustrated by reference to several published studies. Further implications and suggested directions for necessary further development of the RCS concept are discussed.
    Tree ring divergence and standardization

  6. [Brynjarsdottir and Berliner 2011]
    We present a Bayesian hierarchical modeling approach to paleoclimate reconstruction using borehole temperature profiles. The approach relies on modeling heat conduction in solids via the heat equation with step function, surface boundary conditions. Our analysis includes model error and assumes that the boundary conditions are random processes. The formulation also enables separation of measurement error and model error.We apply the analysis to data from nine borehole temperature records from the San Rafael region in Utah. We produce ground surface temperature histories with uncertainty estimates for the past 400 years. We pay special attention to use of prior parameter models that illustrate borrowing strength in a combined analysis for all nine boreholes. In addition, we review selected sensitivity analyses.
    Bayesian borehole approach

  7. [Buentgen et al. 2011]
    European Climate reconstruction, society
    European Climate reconstruction, society

  8. [Christiansen 2011]
    There are indications that hemispheric-mean climate reconstructions seriously underestimate the amplitude of low-frequency variability and trends. Some of the theory of linear regression and error-in-variables models is reviewed to identify the sources of this problem. On the basis of the insight gained, a reconstruction method that is supposed to minimize the underestimation is formulated. The method consists of reconstructing the local temperatures at the geographical locations of the proxies, followed by calculating the hemispheric average. The method is tested by applying it to an ensemble of surrogate temperature fields based on two climate simulations covering the last 500 and 1000 yr. Compared to the regularized expectation maximization (RegEM) truncated total least squares (TTLS) method and a composite-plus-scale method  two methods recently used in the literature the new method strongly improves the behavior regarding lowfrequency variability and trends. The potential importance in real-world situations is demonstrated by applying the methods to a set of 14 decadally smoothed proxies. Here the new method shows much larger low-frequency variability and a much colder preindustrial temperature level than the other reconstruction methods. However, this should mainly be seen as a demonstration of the potential losses and gains of variability, as the reconstructions based on the 14 decadally smoothed proxies are not very robust.
    Climate reconstruction, methods

  9. [Christiansen and Ljungqvist 2011]
    A new multiproxy reconstruction of the Northern Hemisphere extratropical mean temperature over the last millennium is presented. The reconstruction is performed with a novel method designed to avoid the underestimation of low-frequency variability that has been a general problem for regression-based reconstruction methods. The disadvantage of this method is an exaggerated high-frequency variability. The reconstruction is based on a set of 40 proxies of annual to decadal resolution that have been shown to relate to the local temperature. The new reconstruction shows a very cold Little Ice Age centered around the 17th century with a cold extremum (for 50-yr smoothing) of about 1.1 K below the temperature of the calibration period, AD 1880 1960. This cooling is about twice as large as corresponding numbers reported by most other reconstructions. In the beginning of the millennium the new reconstruction shows small anomalies in agreement with previous studies. However, the new temperature reconstruction decreases faster than previous reconstructions in the first 600 years of the millennium and has a stronger variability. The salient features of the new reconstruction are shown to be robust to changes in the calibration period, the source of the local temperatures, the spatial averaging procedure, and the screening process applied to the proxies. An ensemble pseudoproxy approach is applied to estimate the confidence intervals of the 50-yr smoothed reconstruction showing that the period AD 1500 1850 is significantly colder than the calibration period.
    Climate reconstruttions, last millennium

  10. [Dee et al. 2011]
    Abstract ERA-Interim is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim project was conducted in part to prepare for a new atmospheric reanalysis to replace ERA-40, which will extend back to the early part of the twentieth century. This article describes the forecast model, data assimilation method, and input datasets used to produce ERA-Interim, and discusses the performance of the system. Special emphasis is placed on various difficulties encountered in the production of ERA-40, including the representation of the hydrological cycle, the quality of the stratospheric circulation, and the consistency in time of the reanalysed fields. We provide evidence for substantial improvements in each of these aspects. We also identify areas where further work is needed and describe opportunities and objectives for future reanalysis projects at ECMWF. Copyright © 2011 Royal Meteorological Society
    Era Interim

  11. [Diaz et al. 2011]
    The increase in high-resolution proxy records over expanding areas of the globe helps deepen understanding of the unusual climate patterns and the forcing mechanisms responsible for them during the years 950 to 1400.
    Climate reconstruttions, last millennium, MCA

  12. [Delaygue and Bard 2011]
    Abstract Beryllium-10 in ice provides a valuable proxy of solar activity. However, complex production pathways, atmospheric transport, and deposition processes impede its quantitative interpretation. Here, we examine the influence of deposition processes on two Be-10 ice core records from Central Antarctica (South Pole and Dome Fuji stations), covering the last millennium. We try to quantify how Be-10 variations in ice relate to variations in Be-10 production, and the bias associated to this relationship. An independent bias estimation is provided by comparing atmospheric radiocarbon variations reconstructed from tree rings and deduced from Be-10 variations. Both techniques suggest an uncertainty of the order of 10production. This uncertainty estimate does not account for the geographical origin of Be-10, which remains a major issue. Because both Be-10 records are so similar, we propose to average them as a means to decrease the unshared (non solar) variability. This average record provides a new reconstruction of solar modulation parameter U and total solar irradiance over the last *1,300 years. The lowest solar activity is found during the so-called Spo¨rer Minimum (around AD 1450). The highest activities are found during the 8th century and over the last decades: as shown in previous studies, our results suggest that the recent solar activity is not exceptionally high for the last millennium.
    be10, solar activity, last millennium

  13. [Diaz et al. 2011]
    Spatial and temporal characteristics of climate in medieval times
    MCA, drought, forcings

  14. [Feulner 2011]
    Estimates for the total solar irradiance (TSI) during the 17th century Maunder Minimum published in the last few years have pointed towards a TSI difference of 0.2-0.7 W m-2 as compared to the 2008/2009 solar minimum. Two recent studies, however, give anomalies which differ from this emerging consensus. The first study indicates an even smaller TSI difference, placing the Maunder Minimum TSI on the same level as the 2008/2009 minimum. The second study on the other hand suggests a very large TSI difference of 5.8 W m-2. Here I use coupled climate simulations to assess the implications of these two estimates on Northernhemisphere surface air temperatures over the past millennium. Using a solar forcing corresponding to the estimate of the first study, simulated Northern hemisphere temperatures over the past millennium are consistent with reconstructed surface air temperatures. The large TSI differences between times of high and low solar activity as suggested by the second study, however, yield temperatures during all past grand solar minima that are too low, an excessive variance in Northern-hemisphere temperature on timescales of 50 100 years as compared to reconstructions, and temperatures during the first half of the 20th century which are too low and inconsistent with the instrumental temperature record. In summary this suggests a more moderate TSI difference of less than 1 W m-2 and possibly as low as 0-0.3 W m-2.
    Solar forcing variability and temperature reconstructions

  15. [Diaz et al. 2011]
    Spatial and temporal characteristics of climate in medieval times
    MCA, drought, forcings

  16. [Hansen et al. 2011]
    Abstract. Improving observations of ocean heat content show that Earth is absorbing more energy from the Sun than it is radiating to space as heat, even during the recent solar minimum. The inferred planetary energy imbalance, 0.58 ± 0.15 W m−2 during the 6-yr period 2005–2010, con- firms the dominant role of the human-made greenhouse ef- fect in driving global climate change. Observed surface tem- perature change and ocean heat gain together constrain the net climate forcing and ocean mixing rates. We conclude that most climate models mix heat too efficiently into the deep ocean and as a result underestimate the negative forcing by human-made aerosols. Aerosol climate forcing today is in- ferred to be −1.6 ± 0.3 W m−2 , implying substantial aerosol indirect climate forcing via cloud changes. Continued failure to quantify the specific origins of this large forcing is unten- able, as knowledge of changing aerosol effects is needed to understand future climate change. We conclude that recent slowdown of ocean heat uptake was caused by a delayed re- bound effect from Mount Pinatubo aerosols and a deep pro- longed solar minimum. Observed sea level rise during the Argo float era is readily accounted for by ice melt and ocean thermal expansion, but the ascendency of ice melt leads us to anticipate acceleration of the rate of sea level rise this decade
    Energy imbalance

  17. [Hegerl et al. 2011]
    It is the regional and seasonal expression of climate change that determines the effect of greenhouse warming on ecosystems and society1. Whereas anthropogenic influences on European temperatures have been detected over the twentieth century2,3, it has been suggested that the impact of external influences on European temperatures before 1900 is negligible4. Here we use reconstructions of seasonal European land temperature5,6 and simulations with three global climate models7 9 to show that external influences on climate such as the concentrations of stratospheric volcanic aerosols or greenhouse gases, other anthropogenic effects and possibly changes in total solar irradiance have had a discernible influence on European temperatures throughout the past five centuries. In particular, we find that external forcing contributes significantly (p<5long-term variability of winter and spring temperatures and that it is responsible for a best guess of 75winter warming since the late seventeenth century. This warming is largely attributable to greenhouse-gas forcing. Summer temperatures show detectable (p<5variations in response to external forcing before 1900 only. Finally, throughout the record we detect highly significant summer cooling and significant winter warming following volcanic eruptions.
    European Climate reconstructions and simulations, forcing detection.

  18. [Hofer et al. 2011]
    AMOC in CSM
    European Climate reconstruction, society

  19. [Hurtt et al. 2011]
    Abstract In preparation for the fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), the international community is developing new advanced Earth System Models (ESMs) to assess the combined effects of human activities (e.g. land use and fossil fuel emissions) on the carbon-climate system. In addition, four Representative Concentration Pathway (RCP) scenarios of the future (2005–2100) are being provided by four Integrated Assessment Model (IAM) teams to be used as input to the ESMs for future carbon-climate projections (Moss et al. 2010). The diversity of approaches and requirements among IAMs and ESMs for tracking land-use change, along with the dependence of model projections on land-use history, presents a challenge for effectively passing data between these communities and for smoothly transitioning from the historical estimates to future projections. Here, a harmonized set of land-use scenarios are presented that smoothly connects historical reconstructions of land use with future projections, in the format required by ESMs. The land-use harmonization strategy estimates fractional land-use patterns and underlying land-use transitions annually for the time period 1500–2100 at 0.5×0.5 resolution. Inputs include new gridded historical maps of crop and pasture data from HYDE 3.1 for 1500–2005, updated estimates of historical national wood harvest and of shifting cultivation, and future information on crop, pasture, and wood harvest from the IAM implementations of the RCPs for the period 2005–2100. The computational method integrates these multiple data sources, while minimizing differences at the transition between the historical reconstruction ending conditions and IAM initial conditions, and working to preserve the future changes depicted by the IAMs at the grid cell level. This study for the first time harmonizes land-use history data together with future scenario information from multiple IAMs into a single consistent, spatially gridded, set of land-use change scenarios for studies of human impacts on the past, present, and future Earth system.
    European Climate reconstruction, society

  20. [Kaplan et al. 2011]
    Abstract Humans have altered the Earth’s land surface since the Paleolithic mainly by clearing woody vegetation first to improve hunting and gathering opportunities, and later to provide agricultural cropland. In the Holocene, agriculture was established on nearly all continents and led to widespread modification of terrestrial ecosystems. o quantify the role that humans played in the global carbon cycle over the Holocene, we developed a new, annually resolved inventory of anthropogenic land cover change from 8000 years ago to the beginning of large-scale industrialization (ad 1850). his inventory is based on a simple relationship between population and land use observed in several European countries over preindustrial time. Using this data set, and an alternative scenario based on the HYDE 3.1 land use data base, we forced the LPJ dynamic global vegetation model in a series of continuous simulations to evaluate the impacts of humans on terrestrial carbon storage during the preindustrial Holocene. Our model setup allowed us to quantify the importance of land degradation caused by repeated episodes of land use followed by abandonment. By 3 ka BP, cumulative carbon emissions caused by anthropogenic land cover change in our new scenario ranged between 84 and 102 Pg, translating to c. 7 ppm of atmospheric CO2. By ad 1850, emissions were 325–357 Pg in the new scenario, in contrast to 137–189 Pg when driven by HYDE. Regional events that resulted in local emissions or uptake of carbon were often balanced by contrasting patterns in other parts of the world. hile we cannot close the carbon budget in the current study, simulated cumulative anthropogenic emissions over the preindustrial Holocene are consistent with the ice core record of atmospheric d13CO2 and support the hypothesis that anthropogenic activities led to the stabilization of atmospheric CO2 concentrations at a level that made the world substantially warmer than it otherwise would be.
    LULC

  21. [Klein Goldewijk et al. 2011]
    Abstract: This paper presents a tool for long-term global change studies; it is an update of the History Database of the Global Environment (HYDE) with estimates of some of the underlying demographic and agricultural driving factors. Historical population, cropland and pasture statistics are combined with satellite information and specific allocation algorithms (which change over time) to create spatially explicit maps, which are fully consistent on a 5 longitude/latitude grid resolution, and cover the period 10,000 bc to ad 2000. Cropland occupied roughly less than 1$\%$ of the global ice-free land area for a long time until ad 1000, similar to the area used for pasture. In the centuries that followed, the share of global cropland increased to 2$\%$ in ad 1700 (c. 3 million km2) and 11 in ad 2000 (15 million km2), while the share of pasture area grew from 2 in ad 1700 to 24 in ad 2000 (34 million km2) These profound land-use changes have had, and will continue to have, quite considerable consequences for global biogeochemical cycles, and subsequently global climate change. Some researchers suggest that humans have shifted from living in the Holocene (emergence of agriculture) into the Anthropocene (humans capable of changing the Earth's atmosphere) since the start of the Industrial Revolution. But in the light of the sheer size and magnitude of some historical land-use changes (e.g. as result of the depopulation of Europe due to the Black Death in the 14th century and the aftermath of the colonization of the Americas in the 16th century) we believe that this point might have occurred earlier in time. While there are still many uncertainties and gaps in our knowledge about the importance of land use (change) in the global biogeochemical cycle, we hope that this database can help global (climate) change modellers to close parts of this gap.
    LULC

  22. [Leclercq and Oerlemans 2011]
    Temperature reconstructions for recent centuries provide a historical context for the warming over the twentieth century. We reconstruct annual averaged surface temperatures of the past 400 years on hemispherical and global scale from glacier length fluctuations. We use the glacier length records of 308 glaciers. The reconstruction is a temperature proxy with decadal resolution that is completely independent of other temperature records. Temperatures are derived from glacier length changes using a linear response equation and an analytical glacier model that is calibrated on numerical model results. The global and hemispherical temperatures reconstructed from glacier length fluctuations are in good agreement with the instrumental record of the last century. Furthermore our results agree with existing multi-proxy reconstructions of temperature in the preinstrumental period. The temperature record obtained from glacier fluctuations confirms the pronounced warming of the twentieth century, giving a global cumulative warming of 0.94 ± 0.31 K over the period 1830 2000 and a cumulative warming of 0.84 ± 0.35 K over the period 1600 2000.
    Temperature reconstruction from glaciers, last millennium

  23. [Lawrence et al. 2011]
    The Community Land Model is the land component of the Community Climate System Model. Here, we describe a broad set of model improvements and additions that have been provided through the CLM development community to create CLM4. The model is extended with a carbon-nitrogen (CN) biogeo- chemical model that is prognostic with respect to vegetation, litter, and soil carbon and nitrogen states and vegetation phenology. An urban canyon model is added and a transient land cover and land use change (LCLUC) capability, including wood harvest, is introduced, enabling study of historic and future LCLUC on energy, water, momentum, carbon, and nitrogen fluxes. The hydrology scheme is modified with a revised numerical solution of the Richards equation and a revised ground evaporation parameterization that accounts for litter and within-canopy stability. The new snow model incorporates the SNow and Ice Aerosol Radiation model (SNICAR) - which includes aerosol deposition, grain-size dependent snow aging, and vertically-resolved snowpack heating – as well as new snow cover and snow burial fraction parameteriza- tions. The thermal and hydrologic properties of organic soil are accounted for and the ground column is extended to ,50-m depth. Several other minor modifications to the land surface types dataset, grass and crop optical properties, surface layer thickness, roughness length and displacement height, and the disposition of snow-capped runoff are also incorporated. The new model exhibits higher snow cover, cooler soil temperatures in organic-rich soils, greater global river discharge, and lower albedos over forests and grasslands, all of which are improvements compared to CLM3.5. When CLM4 is run with CN, the mean biogeophysical simulation is degraded because the vegetation structure is prognostic rather than prescribed, though running in this mode also allows more complex terrestrial interactions with climate and climate change.
    clm4

  24. [Lawrimore et al. 2011]
    Since the early 1990s the Global Historical Climatology Network Monthly (GHCN M) data set has been an internationally recognized source of data for the study of observed variability and change in land surface temperature. It provides monthly mean temperature data for 7280 stations from 226 countries and territories, ongoing monthly updates of more than 2000 stations to support monitoring of current and evolving climate conditions, and homogeneity adjustments to remove non climatic influences that can bias the observed temperature record. The release of version 3 monthly mean temperature data marks the first major revision to this data set in over ten years. It introduces a number of improvements and changes that include consolidating duplicate  series, updating records from recent decades, and the use of new approaches to homogenization and quality assurance. Although the underlying structure of the data set is significantly different than version 2, conclusions regarding the rate of warming in global land surface temperature are largely unchanged.
    Quality assessment, data sets

  25. [Longworth et al. 2011]
    Abstract: The strength of the Atlantic Meridional Overturning Circulation(MOC)at 26.51 N may be inferred from the combination of Florida Straits transport(derived from cable measurements),Ekman transport estimated from wind stress climatologies and mid-oceangeostrophic shear(traditionally obtained from hydrographic sections) with application of mass balance to the section to yield the mid-ocean barotropic flow. The recent Rapid monitoring project has provided time series information for the mid- ocean geostrophic shear since 2004. This work presents methods to assemble a comparable data set from CTD end stations and boundary mooring temperature and pressure time series to estimate the past variability from 1980 to 2005. Variability in the end stationd erived transport anomalies suggests that the MOC has fluctuated by more than 10Sv, encompassing all MOC estimates reported in the literature.Interannual changes in MOC transport are masked by thisvariability and calculated trends in layer transports are not statistically significant. More extensive data sets of CTD cast s and moored temperature records at the western boundary do show significant changes with warming in the thermocline and long-term freshening of the deep waters between the 1980s and 2005. These changes are associated with stronger southward flow in the upper waters and weaker southward flow in the deep waters,and suggest a decrease in the MOC strength of 2–4Sv.Any such decrease, however, is masked by the scale of variability in layer transports derived from the historical database of CTD end stations.
    MOC monitoring

  26. [McShane and Wyner 2011]
    Predicting historic temperatures based on tree rings, ice cores, and other natural proxies is a difficult endeavor. The relationship between proxies and temperature is weak and the number of proxies is far larger than the number of target data points. Furthermore, the data contain complex spatial and temporal dependence structures which are not easily captured with simple models. In this paper, we assess the reliability of such reconstructions and their statistical significance against various null models. We find that the proxies do not predict temperature significantly better than random series generated independently of temperature. Furthermore, various model specifications that perform similarly at predicting temperature produce extremely different historical backcasts. Finally, the proxies seem unable to forecast the high levels of and sharp run-up in temperature in the 1990s either in-sample or from contiguous holdout blocks, thus casting doubt on their ability to predict such phenomena if in fact they occurred several hundred years ago. We propose our own reconstruction of Northern Hemisphere average annual land temperature over the last millennium, assess its reliability, and compare it to those from the climate science literature. Our model provides a similar reconstruction but has much wider standard errors, reflecting the weak signal and large uncertainty encountered in this setting.
    Climate reconstructions, bayesian methods, proxy limitations

  27. [Porter and Pisaric 2011]
    We present a new 23-site network of white spruce ring-width chronologies near boreal treeline in Old Crow Flats, Yukon Territory, Canada. Most chronologies span the last 300 years and some reach the mid-16th century. The chronologies exhibit coherent growth patterns before the 1930s. However, since the 1930s, they diverge in trend and exhibit one of two contrasting, but well-replicated patterns we call Group 1 and Group 2. Over the instrumental period (1930 2007) Group 1 sites were inversely correlated with previous-year July temperatures while Group 2 sites were positively correlated with growth-year June temperatures. At the broader northwestern North America (NWNA) scale, we find that the Group 1 and Group 2 patterns are common to a number of white spruce chronologies, which we call NWNA 1 and NWNA 2 chronologies. The NWNA 1 and NWNA 2 chronologies also share a single coherent growth pattern prior to their divergence (ca. 1950s). Comparison of the NWNA 1/NWNA 2 chronologies against gridded 20th-century temperatures for NWNA and reconstructed northern hemisphere summer temperatures (AD 1300 2000) indicates that all sites responded positively to temperature prior to the mid-20th century (at least back to AD 1300), but that some changed to a negative response (NWNA 1) while others maintained a positive response (NWNA 2). The spatial extent of divergence implies a large-scale forcing. As the divergence appears to be restricted to the 20th century, we suggest that the temperature response shift represents a moisture stress caused by an anomalously warm, dry 20th-century climate in NWNA, as indicated by paleoclimatic records. However, because some sites do not diverge and are located within a few kilometres of divergent sites, we speculate that site-level factors have been important in determining the susceptibility of sites to the large-scale drivers of divergence.
    Divergence problem

  28. [Shanahan et al. 2011]
    Although persistent drought in West Africa is well documented from the instrumental record and has been primarily attributed to changing Atlantic sea surface temperatures, little is known about the length, severity, and origin of drought before the 20th century. We combined geomorphic, isotopic, and geochemical evidence from the sediments of Lake Bosumtwi, Ghana, to reconstruct natural variability in the African monsoon over the past three millennia. We find that intervals of severe drought lasting for periods ranging from decades to centuries are characteristic of the monsoon and are linked to natural variations in Atlantic temperatures. Thus the severe drought of recent decades is not anomalous in the context of the past three millennia, indicating that the monsoon is capable of longer and more severe future droughts
    Drought, West Africa

  29. [Schmidt et al. 2011]
    Simulations of climate over the Last Millennium (850 1850 CE) have been incorporated into the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). The drivers of climate over this period are chiefly orbital, solar, volcanic, changes in land use/land cover and some variation in greenhouse gas levels. While some of these effects can be easily defined, the reconstructions of solar, volcanic and land use-related forcing are more uncertain. We describe here the approach taken in defining the scenarios used in PMIP3, document the forcing reconstructions and discuss likely implications.
    Forcings for PMIP runs

  30. [Schrijver et al. 2011]
    Variations in the total solar irradiance (TSI) associated with solar activity have been argued to influence the Earth s climate system, in particular when solar activity deviates from the average for a substantial period. One such example is the 17th Century Maunder Minimum during which sunspot numbers were extremely low, as Earth experienced the Little Ice Age. Estimation of the TSI during that period has relied on extrapolations of correlations with sunspot numbers or even more indirectly with modulations of galactic cosmic rays. We argue that there is a minimum state of solar magnetic activity associated with a population of relatively small magnetic bipoles which persists even when sunspots are absent, and that consequently estimates of TSI for the Little Ice Age that are based on scalings with sunspot numbers are generally too low. The minimal solar activity, which measurements show to be frequently observable between active region decay products regardless of the phase of the sunspot cycle, was approached globally after an unusually long lull in sunspot activity in 2008 2009. Therefore, the best estimate of magnetic activity, and presumably TSI, for the least active Maunder Minimum phases appears to be provided by direct measurement in 2008 2009. The implied marginally significant decrease in TSI during the least active phases of the Maunder Minimum by 140 to 360 ppm relative to 1996 suggests that drivers other than TSI dominate Earth s long term climate change.
    Solar variabilty, LMM, 2008-2009 minimum

  31. [Shapiro et al. 2011]
    Context. The variable Sun is the most likely candidate for the natural forcing of past climate changes on time scales of 50 to 1000 years. Evidence for this understanding is that the terrestrial climate correlates positively with the solar activity. During the past 10 000 years, the Sun has experienced the substantial variations in activity and there have been numerous attempts to reconstruct solar irradiance. While there is general agreement on how solar forcing varied during the last several hundred years  all reconstructions are proportional to the solar activity  there is scientific controversy on the magnitude of solar forcing. Aims. We present a reconstruction of the total and spectral solar irradiance covering 130 nm 10 m from 1610 to the present with an annual resolution and for the Holocene with a 22-year resolution. Methods. We assume that the minimum state of the quiet Sun in time corresponds to the observed quietest area on the present Sun. Then we use available long-term proxies of the solar activity, which are 10Be isotope concentrations in ice cores and 22-year smoothed neutron monitor data, to interpolate between the present quiet Sun and the minimum state of the quiet Sun. This determines the longterm trend in the solar variability, which is then superposed with the 11-year activity cycle calculated from the sunspot number. The time-dependent solar spectral irradiance from about 7000 BC to the present is then derived using a state-of-the-art radiation code. Results. We derive a total and spectral solar irradiance that was substantially lower during the Maunder minimum than the one observed today. The difference is remarkably larger than other estimations published in the recent literature. The magnitude of the solar UV variability, which indirectly affects the climate, is also found to exceed previous estimates. We discuss in detail the assumptions that lead us to this conclusion.
    Amplitude and spectral solar forcing reconstruction

  32. [Smerdon et al. 2011b]
    The spatial skill of four climate field reconstruction (CFR) methods is investigated using pseudoproxy experiments (PPEs) based on two millennial length general circulation model simulations. Results indicate that presently available global and hemispheric CFRs for the Common Era likely suffer from spatial uncertainties not previously characterized. No individual method produced CFRs with universally superior spatial error statistics, making it difficult to advocate for one method over another. Northern Hemisphere means are shown to be insufficient for evaluating spatial skill, indicating that the spatial performance of future CFRs should be rigorously tested for dependence on proxy type and location, target data and employed methodologies. Observed model dependent methodological performance also indicates that CFR methods must be tested across multiple models and conclusions from PPEs should be carefully evaluated against the spatial statistics of real world climatic fields
    CFR methods test

  33. [Smerdon et al. 2011a]
    Due to a production error, Smerdon et al. (2010) was mistakenly published without the final corrections implemented in the text. To correct this, the following pages contain the full article as it should have appeared, with the final edits included. The staff of the Journal of Climate regrets any inconvenience this error may have caused.
    CFR methods test, corrigendum

  34. [Vieira et al. 2011]
    Context. Long-term records of solar radiative output are vital for understanding solar variability and past climate change. Measurements of solar irradiance are available for only the last three decades, which calls for reconstructions of this quantity over longer time scales using suitable models. Aims. We present a physically consistent reconstruction of the total solar irradiance for the Holocene. Methods. We extend the SATIRE (Spectral And Total Irradiance REconstruction) models to estimate the evolution of the total (and partly spectral) solar irradiance over the Holocene. The basic assumption is that the variations of the solar irradiance are due to the evolution of the dark and bright magnetic features on the solar surface. The evolution of the decadally averaged magnetic flux is computed from decadal values of cosmogenic isotope concentrations recorded in natural archives employing a series of physics-based models connecting the processes from the modulation of the cosmic ray flux in the heliosphere to their record in natural archives. We then compute the total solar irradiance (TSI) as a linear combination of the jth and jth + 1 decadal values of the open magnetic flux. In order to evaluate the uncertainties due to the evolution of the Earth s magnetic dipole moment, we employ four reconstructions of the open flux which are based on conceptually different paleomagnetic models. Results. Reconstructions of the TSI over the Holocene, each valid for a different paleomagnetic time series, are presented. Our analysis suggests that major sources of uncertainty in the TSI in this model are the heritage of the uncertainty of the TSI since 1610 reconstructed from sunspot data and the uncertainty of the evolution of the Earth s magnetic dipole moment. The analysis of the distribution functions of the reconstructed irradiance for the last 3000 years, which is the period that the reconstructions overlap, indicates that the estimates based on the virtual axial dipole moment are significantly lower at earlier times than the reconstructions based on the virtual dipole moment. We also present a combined reconstruction, which represents our best estimate of total solar irradiance for any given time during the Holocene. Conclusions.We present the first physics-based reconstruction of the total solar irradiance over the Holocene, which will be of interest for studies of climate change over the last 11500 years. The reconstruction indicates that the decadally averaged total solar irradiance ranges over approximately 1.5 W/m2 from grand maxima to grand minima.
    TSI reconstruction

  35. [Viviroli et al. 2011]
    Abstract: Mountains are essential sources of freshwater for our world, but their role in global water resources could well be significantly altered by climate change. How well do we understand these potential changes today, and what are implications for water resources management, climate change adaptation, and evolving water policy? To answer above questions, we have examined 11 case study regions with the goal of providing a global overview, identifying research gaps and formulating recommendations for research, management and policy. After setting the scene regarding water stress, water management capacity and scientific capacity in our case study regions, we examine the state of knowledge in water resources from a highland-lowland viewpoint, focusing on mountain areas on the one hand and the adjacent lowland areas on the other hand. Based on this review, research priorities are identified, including precipitation, snow water equivalent, soil parameters, evapotranspiration and sublimation, groundwater as well as enhanced warming and feedback mechanisms. In addition, the importance of environmental monitoring at high altitudes is highlighted. We then make recommendations how advancements in the management of mountain water resources under climate change could be achieved in the fields of research, water resources management and policy as well as through better interaction between these fields. We conclude that effective management of mountain water resources urgently requires more detailed regional studies and more reliable scenario projections, and that research on mountain water resources must become more integrative by linking relevant disciplines. In addition, the knowledge exchange between managers and researchers must be improved and oriented towards long-term continuous interaction.
    Mountain water resources

  36. [Zhou et al. 2011]
    To compare differences among the Medieval Warm Period (MWP), Little Ice Age (LIA), and 20th century global warming (20CW), six sets of transient and equilibrium simulations were generated using the climate system model FGOALSgl. This model was developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences. The results indicate that MWP warming is evident on a global scale, except for at mid-latitudes of the North Pacific. However, the magnitude of the warming is weaker than that in the 20th century. The warming in the high latitudes of the Northern Hemisphere is stronger than that in the Southern Hemisphere. The LIA cooling is also evident on a global scale, with a strong cooling over the high Eurasian continent, while the cooling center is over the Arctic domain. Both the MWP and the 20CW experiments exhibit the strongest warming anomalies in the middle troposphere around 200 300 hPa, but the cooling center of the LIA experiment is seen in the polar surface of the Northern Hemisphere. A comparison of model simulation against the reconstruction indicates that model s performance in simulating the surface air temperature changes during the warm periods is better than that during the cold periods. The consistencies between model and reconstruction in lower latitudes are better than those in high latitudes. Comparison of the inter-annual variability mode of East Asian summer monsoon (EASM) rainfall during the MWP, LIA and 20CW reveals a similar rainfall anomalies pattern. However, the time spectra of the principal component during the three typical periods of the last millennium are different, and the quasi- biannual oscillation is more evident during the two warm periods. At a centennial time scale, the external mode of the EASM variability driven by the changes of effective solar radiation is determined by the changes of large scale land-sea thermal contrast. The rainfall anomalies over the east of 110°E exhibit a meridional homogeneous change pattern, which is different from the meridional out-of-phase change of rainfall anomalies associated with the internal mode.
    CFR methods test, corrigendum